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/. Abstract 

This review, covering the period 1987—1993, deals 
with quantum chemical studies that employ the 
supermolecular method with some form of counter­
poise to calculate the interaction energies of molecu­
lar complexes. A theorem is provided showing that 
the standard counterpoise approach, in which, at a 
given geometry, energies are evaluated using the full 
basis set of the complex, yields a pure (i.e. BSSE-
free) interaction energy. Artifacts resulting from 
secondary BSSE have been found to become negli­
gible before the basis set limit of this interaction 
energy is attained. Alternative methods in which 
counterpoise is achieved by restricting the fragment 
description in the calculation of the full complex to 
the level used for the isolated fragment are formally 
nearly correct but have been found to give less 
satisfactory results, mainly because the relevant 
fragment properties converge only slowly to the basis 
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set limit. Some practical aspects are considered as 
well, such as the ambiguities that arise in calculating 
the binding energy of a cluster of molecules. 

//. Introduction 

In the last few years significant progress has been 
made in the accurate ab initio calculation of the 
interaction energies of molecular complexes. In some 
cases the calculated results are now more precise 
than the available experimental data. Several fac­
tors have made this progress possible. First, the 
accumulated experience with the requirements that 
must be satisfied by the (one-electron) basis set has 
made it possible to converge the interaction energy 
at a given level of theory to the basis set limit, using 
basis sets of manageable size. Second, the methods 
that are currently available to allow for electron 
correlation effects are sufficiently powerful to keep 
the errors that are inevitably made at this level 
(barring cases like He2 where full-CI is a viable 
option1'2) within controllable limits. 

A third area where decisive progress has been 
made is in developing methodologies specifically 
aimed at calculating interaction energies. Two main 
approaches exist in this field, viz. the symmetry-
adapted perturbation theory (SAPT) approach,3,4 in 
which interaction energies are evaluated directly, and 
the supermolecular approach, in which interaction 
energies are obtained as the difference between the 
total energies of the complex and its constituent 
parts. The SAPT approach has long suffered from 
the practical problem that the available programs 
could evaluate only the simpler of the numerous 
energy contributions that arise in this theory. But 
the newer programs are more complete, and accurate 
results for systems built from two fragments may be 
within reach. A review of the latest developments 
is given by Jeziorski et al. in this volume.4 

The supermolecular approach has several practical 
as well as conceptual advantages over the SAPT 
approach. Use is made of standard quantum chemi­
cal software, which employs highly efficient algo­
rithms and which is widely available. The approach 
allows one to study both weakly and strongly inter­
acting systems. The systems may contain any num­
ber of fragments and the effects of nonadditivity can 
be studied with ease. The main problem of this 
approach has been the uncertainty of how to deal 
with the so-called basis set superposition error 
(BSSE), which causes an unphysical lowering of the 
dimer energy EAB as the dimer forms. Calculating 
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the interaction energy by the counterpoise method5,6 

has been proposed as a strategy to overcome such 
problems, but it has long been thought that this 
method, while perhaps reasonable, is basically un­
sound. 

In this short review our aim is to summarize some 
key arguments in the field of counterpoise theory and 
to discuss the most recent advances which show that 
the counterpoise (CP) method is not merely a reason­
able device for correcting the basis set superposition 
error but a fundamentally correct approach to the 
evaluation of differential quantities, such as interac­
tion energies. 

///. Matters of Definition 

In the supermolecular method, the interaction 
energy of a complex AB can be defined as the 
difference 

AE(B) = E^(R) -EA-EB (1) 

where R is the A-B distance. For brevity, we sup-
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press all other intermolecular geometrical param­
eters. For simplicity, we have assumed that the 
quantum mechanical method used to obtain E^, EA, 
and EB is size-consistent, i.e. for large separations 
E** reduces to the sum EA + EB. In (1) EA and EB 

are assumed to be evaluated using the A basis set 
for EA and the B basis set for EB. A AE obtained in 
this way will be denoted as AEno c p . 

In actual calculations one might obtain AE by 
following the lowering of E ^ , as the interfragment 
distance is reduced from infinity to the equilibrium 
distance Re, where E ^ reaches a minimum. In fact, 
this is the standard procedure in the gradient (and 
higher derivative)-based optimization algorithms pro­
vided in packages like Gaussian and GAMESS. It 
is now well-recognized that the result one obtains for 
AE in this way is too negative, because as R de­
creases not only is the interaction switched on but 
also the monomers present in AB can start using the 
one-electron basis set of their partner in the complex, 
thereby providing an additional stabilization that has 
nothing to do with the AE one is interested in. The 
error resulting from this has been termed the basis 
set superposition error (BSSE).7 Its size is usually 
not small compared to AE, and so the ab initio 
prediction of potential energy surfaces with quantita­
tive accuracy is only possible if BSSE can effectively 
be removed or avoided. 

It is perhaps appropriate to emphasize that the 
usage of the partner basis [the so-called basis set 
extension (BSE)8] is not itself an error, for it actually 
improves the wave function of each monomer. There 
is ample evidence that the description of almost every 
physical component of the interaction energy is 
improved by it. Rather, the error in the above 
procedure is a matching or balancing error, resulting 
from the fact that one compares EAB at distances 
where usage of partner orbitals plays a role, to EAB 

at infinity, where it does not. The matching at the 
one-electron level can be restored and the matching 
error avoided by calculating the interaction energy 
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f r o m 

AECP(R) = E^(R) - EA{AB\R) - EB{m(R) (2) 

where EA{AB} and EB{AB} are monomer energies ob­
tained using the full dimer basis {AB} at the par­
ticular AB geometry one is studying. The {B} basis 
in the EA{AB^ calculation and the {A} basis in the 
£B{AB> calculation are called ghost basis sets. The 
basis-set matching embodied in (2) has been termed 
function counterpoise by Boys and Bernardi,6 who 
originally proposed the use of the counterpoise (CP) 
method (2) by noting that to evaluate the effect of a 
perturbation (in this case, the interaction) one should 
not make any changes to the functional space, as the 
perturbation is switched on. 

By inspection, there is no matching problem in (2), 
and so (2) is free from BSSE in the sense in which 
this term was originally proposed.7 Applying (2) 
means that the occurrence of BSSE is avoided, and 
there is no need to explicitly define or calculate a 
quantity called BSSE. (We postpone a further dis­
cussion of the physical significance of the interaction 
energy AECP given by (2) till section IV.) 

However, many routine calculations on molecular 
complexes do not use (2) but simply follow E^(R) to 
its minimum, which is equivalent to the use of eq 1. 
At given points of the potential energy surface 
generated in this way one may then want to assess 
the size of the error incurred by using (1). Since (2) 
is the matched counterpart of (1), it follows that the 
matching error in (1) is 

BSSE = EMAB\R) + EB{m(R) - EA - EB (3) 

and this is the definition of BSSE most widely 
employed in the literature. The same quantity has 
also been termed "orbital basis inconsistency" (OBI) 
error,9 for reasons clear from the above. 

It should be realized that matching errors may not 
only be present at the level of the orbital basis set, 
but at the level of the n-electron configuration set as 
well.10 The (usually very small) error in AE resulting 
from this may be called "configuration basis incon­
sistency" (CBI) error9 or configuration set superposi­
tion error (CSSE). CSSE, like BSSE, is overlap-
dependent and hence rapidly decreases with in­
creasing R. Unlike the BSSE, CSSE will not vanish 
as the one-electron basis {AB} approaches complete­
ness. Further details are discussed in section IVE. 

A. The Overcorrection Debate 

Over the years a debate has evolved centering on 
the question whether (3) is a sensible assessment of 
the error in (1). There are widespread feelings that 
(3) overestimates the error in (1). The doubts have 
arisen because EA{AB} and EB{AB} in (2) are evaluated 
using the full basis set of the dimer, i.e. including 
the orbitals on the ghost molecule that are to be 
occupied as the dimer forms, whereupon they will no 
longer be available for improving the partners en­
ergy.11 Consequently, the matching in (2) was felt 
to be imprecise, and the AB of (2) was expected to be 
more repulsive than it should be. It was proposed12 

that instead of the above scheme—called full coun­
terpoise (FCP) in this context—a more appropriate 

Table 1. A Comparison of Uncorrected (No CP), 
Virtuals-Only Corrected (VCP), and Fully Corrected 
(FCP) CEPA-I Interaction Energies for He2 with 
BSSE-Free Perturbation Theory Estimates (R = 5.6a0) 

interaction energies, K 

basis" no CP VCP FCP estimated6 estimated0 

CR0DS2 -10.29 -7.66 -7.44 -7.74 -7.33 
CR0DS4 -39.67 -12.09 -8.81 -8.79 -8.81 
CR4'DS2 -8.48 -8.31 -8.28 -8.30 -8.30 
CR4'DS4 -9.82 -9.29 -9.19d [-9.19] [-9.19] 

" CRO and CR4' are 4slp and 8s4p3d sets, respectively, 
optimized for intra-atomic correlation. DS2 and DS4 are lp ld 
and 2pldlf lg low-exponent sets optimized for the dispersion 
energy. 6 Perturbation estimate based on Bdisp13 c Perturbation 
estimate based on Easp and E1.16 d Value used in calibrating 
the estimated columns. 

CP scheme would be one—called virtual counterpoise 
(VCP)-in which the monomer energies are calculated 
in a basis that contains the ghost virtual orbital space 
but not the ghost occupied orbitals. This issue has 
been definitely settled in a number of studies which 
critically compared the performance of the VCP and 
FCP schemes.1314 In ref 13, using He2 as an example, 
AEFCP, AEVCP, and AEn0 c p were calculated at the 
CEPA-I level in a sequence of basis sets. Each basis 
CRftDSm consisted of a CR part and a DS part. For 
each basis, independent BSSE-free perturbation cal­
culations were made of the dispersion energy E20diSp 
as given by SAPT. These were used to make a 
perturbation estimate of the BSSE-free interaction 
energy, to be expected for each of the basis sets used. 
In a recent paper, Gutowski et al.15 improved this 
perturbation estimate by also calculating the BSSE-
free correlated first-order interaction energy E1 for 
each basis set. 

A summary of the results is given in Table 1. One 
notes that the FCP scheme yields results that are 
close to the BSSE-free perturbation estimates, espe­
cially the more recent extended one, while the VCP 
scheme yields interaction energies that are too at­
tractive, especially in cases where the BSSE is large. 
For basis CR0DS4 the VCP scheme even yields a 
binding energy that is larger than the experimental 
value of -11 K, whereas the CEPA-I method is 
known to be unable to fully recover all the dispersion 
attraction in this system. The VCP scheme must 
therefore be basically wrong. 

It was then recognized13,14 that the nonavailability 
of the partners-occupied orbitals is part of the dimer 
physics that one is trying to describe; viz. it is the 
result of Pauli's exclusion principle, leading to re­
pulsive exchange terms in AE. To assess the size of 
these repulsions it is imperative to compare the 
dimer energy to a monomer reference energy where 
the to-be-occupied orbital space is still fully available, 
that is, to monomer energies evaluated using the full 
basis set of the dimer including the ghost occupied 
orbitals. 

Thus, in reviewing the overcorrection debate up to 
1987 it was concluded8'16 that the original basis for 
the overcorrection concept was wrong. The sparse 
evidence for overcorrection that had been presented 
till then could all be traced to faulty reasoning. 
Today, we see no reason to depart from these views 
and indeed—as we argue in later sections—the sound­
ness of the CP recipe is now more apparent than ever. 
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In spite of these developments, however, the over­
correction philosophy has survived over the years and 
even now is still surprisingly popular. 1^17"25 (This list 
of quotes is not exhaustive.) The current literature 
abounds with statements that "CP overcorrects the 
BSSE in (I)", that the "CP method was used to 
estimate the BSSE in (I)",-implying that the removal 
in (2) is not precise—and that "it is prudent to assume 
that the correct interaction energy [for method X in 
basis Y] will be bracketed by AEno c p and AECP". In 
short, CP-corrected results are still viewed with 
scepticism. 

That so many authors stick to an unfounded and 
disproven concept is regrettable (for it seriously 
detracts from the predictive power of current quan­
tum chemical practice), but it is perhaps not too 
surprising, in view of the long history of the subject. 
There is, moreover, another misconception that keeps 
the overcorrection idea alive, viz. the expectation that 
the CP recipe should produce a result that is closer 
to the exact AE for a given system. This is clearly a 
most unreasonable expectation, since the dimer basis 
will usually not be complete, and the quantum 
mechanical methods used in evaluating the energies 
in (2) will usually be approximate. Thus, in judging 
calculated interaction energies one should clearly 
distinguish between the basis set superposition error 
(BSSE) and basis set (and configuration set) incom­
pleteness errors (BSIE).26 BSSE is a result of the 
{AB} basis being more complete than {A} alone or 
{B} alone, but removal of BSSE will not remove the 
incompleteness of {AB}, and so the CP method will 
only give high-accuracy results if sufficient care is 
taken in choosing the basis set and the computational 
method. 

B. A New Definition of BSSE? 

A BSSE definition entirely different from (3) has 
very recently been put forward by Davidson and 
Chakravorty.27 Their paper starts with a review that 
accurately reflects the confusion that prevails in the 
counterpoise debate. Notably, in their discussion of 
a number of pathological cases in which AECP is 
further removed from some desirable value than the 
uncorrected AE, the authors do not make a clear 
distinction between BSSE and BSIE, thereby creat­
ing the false impression that the CP method does not 
yield a valid interaction energy. 

The authors then go on to propose an alternative 
definition of the BSSE in a finite-basis calculation 
on system AB. As in the above discussion they take 
the view that BSSE is an error made in AE when 
the monomer energies are calculated in a basis 
having fewer functions than are available in the 
dimer calculation. However instead of using the 
combined {AB} basis considered in the above discus­
sions, they define BSSE in the context of an enlarged 
basis {ABC} where {C} is the orthogonal complement 
to {AB} such that {ABC} is a complete basis. Their 
BSSE is then defined, for molecule A, (omitting the 
minus sign in ref 27) as 

BSSEA = £A{ABC} - EA{AC} (4) 

and likewise for molecule B. They consider that the 

correct dimerization energy, free of the BSSE (4), is 
the one in which both E^ and the monomer energies 
are all evaluated in the {ABC} basis, which is simply 
the counterpoise prescription (2), but now applied at 
the level of the {ABC} basis. Note that for the 
hypothetical case {AB} itself is a complete basis, the 
new BSSE definition reduces to the standard result 
of eq 3. For the more usual case that {AB} is 
incomplete, the authors provide (HF)2 and (H20)2 
sample calculations showing that for the basis sets 
they employ their prescription yields a BSSE which 
is larger than that of the standard recipe. This 
finding is not unexpected for it is well known that 
enlarging a given basis may lead to increased BSSE 
or to decreased BSSE, depending on the basis one 
starts from and on the type of enlargement (e.g. see 
ref 13) (cf. the He2 results presented in Table 1). 

On the whole this new definition does very little 
to resolve the dilemmas outlined before. In setting 
up their definition, the authors invoke the standard 
CP recipe (2), applied at the complete-basis level. At 
this level it is easy to see that this recipe is the only 
valid choice. However, complete-basis calculations 
are not a practical proposition, and it would be of 
much more interest to know whether the CP recipe 
remains valid at the level of the {AB} as well. This 
question remains unanswered. Furthermore, as 
argued before, if one is prepared to apply the coun­
terpoise recipe at the {AB} level, there is no need to 
introduce or evaluate a quantity called BSSE. There 
is even less point in knowing how large the BSSE 
might have been in the hypothetical case that one 
had employed a basis more complete than {AB}, 
especially since the size of the BSSE carries no 
information on the quality of a given AECP result. We 
are forced to conclude that this new definition of 
BSSE is superfluous, and one may only hope that its 
introduction will not further increase the confusion 
surrounding the CP recipe. 

IV. Evidence That the Counterpoise Method Is a 
Rigorously Correct Procedure 

In this section we ask to what extent (2), which 
defines AECF, rigorously yields a pure interaction 
energy for a given system. We do this not by 
analyzing possible errors in (1), but by direct inves­
tigation of the implications of (2). 

As stated above, the only valid criterion forjudging 
the correctness of AECP is whether it is close to (or 
perhaps identical with) the result that should have 
been expected for the basis set and ab initio method 
employed in the supermolecular calculation. Thus, 
"the problem in judging the CP approach is in 
knowing the right answer".28 This "right answer" is 
not, in general, the exact AE that would result from 
an exact solution of the Schrodinger equation, be­
cause of the remaining incompleteness errors in AECP 

(BSIE). 
One way of checking the correctness of the CP 

approach has been to study a given complex in a 
series of basis sets which differ markedly in the 
BSSE, while reasonable interaction energies (reason­
able for these sets) can be guessed with some 
confidence. Such studies have been presented by 
Meyer et al.,29 by Szczesniak and Schemer,30 and 
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more recently by Tao and Pan.20-22 In most cases 
the CP method gave results close to those expected. 
Tao and Pan concluded that for the smaller of their 
basis sets the CP results suffered from an over­
correction of the BSSE, but this is an unjustified 
conclusion since they started from the assumption 
that the effect on AJB from adding different basis 
functions to a given root basis is additive, which is 
far from true.31,32 

A. A Counterpoise Theorem for FuII-CI Wave 
Functions 

We here present a direct proof of the correctness 
of (2) by partitioning Ai5cp into first-order and higher 
order components, (A£HL and AEhigher order, respec­
tively) and by relating these to their counterparts in 
SAPT theory, which are known to be pure interaction 
energies and which are known to be BSSE-free. 

This confrontation of two methodologies is most 
easily started at the level of the first-order interaction 
energy (first-order in V, see below), using X-level 
descriptions for the monomer and the dimer, where 
X = SCF, CI, CEPA, MPn, etc. Starting from the 
X-level unperturbed monomer wave functions ipA 

and xpB and using their antisymmetrized product 
AipAipB as a zeroth-order dimer wave function, the 
supermolecular first-order dimer energy, usually 
referred to as the Heitler-London (HL) dimer energy, 
i s 

_ <AV£V;!I#IAV£VO> 

<At /# /^Wo> 
(5) 

Using [HJL] = 0 and H = HA + H* + V, where HA + 
H3 is the sum of the free-monomer Hamiltonians, and 
V is the intermolecular perturbation (the same as in 
Londons theory), this reduces to 

^ H L _ <AipfoB
0\H

A + HB + V\^B) 

** (A^VolVoVo) 
which in turn may be written as 

where the first term at the right-hand side is the 
(BSSE-free) first-order perturbation interaction en­
ergy E1'SAPT as obtained in symmetry-adapted per­
turbation theory (SAPT).3 The monomer energies EA 

and EB are the expectation values of HA and H3, while 
the final A term, which has been called zeroth-order 
exchange term,33 arises because yjA and ipB usually 
are not precisely eigenfunctions of HA and H3, 
respectively. 

We now arrive at the usual step in supermolecular 
calculations where the interaction energy (in this 
case the Heitler—London or first-order supermolecu­
lar interaction energy AZ?HL) is obtained by subtract­
ing monomer energies from the dimer energy, viz. 

A£HL = E*t ~ EA - EB = EUSAVT + A (8) 

Several important observations can be made at this 
stage. Firstly, by inspection of (6) and (7), A = 0 if 

exact monomer wave functions are used in construct­
ing AipAtpB. This is the basic reason why it is 
possible to get pure interaction energies (such as 
£1,SAPT m JJ16 p r e s e n t case) simply by subtracting 
monomer energies from a supermolecular dimer 
energy. 

Secondly, it follows from a theorem derived by 
Chalasinski and Gutowski34 that A will also be zero 
in the much more important case—from the practical 
point of view—that AIJJ0 rpB is built from full-CI wave 
functions for A and B, employing for each of them the 
full dimer basis set. This implies that the monomer 
energies in (7), which are subtracted in getting (8), 
must also be evaluated in the full dimer basis set, 
and so one operates here precisely according to the 
CP approach. The only difference with (2) is that we 
here consider zeroth-order dimer wave functions. 
(Note that there is no requirement that the dimer 
basis should be a complete set.) 

Since A = 0 in (8) we have proved, for the finite-
basis full CI case, that the first-order supermolecular 
energy A£HL, being equal to £1SAPT, is a pure inter­
action energy. 

Turning now to the higher order supermolecular 
energy AEhigher order, it would be cumbersome to equate 
it explicitly to the corresponding BSSE-free SAPT 
expressions, for the full-CI AEhi^her order is a varia­
tional quantity, and so the SAPT expressions would 
have to be summed to infinite order. However, since 
in (7) and (8) we use DCBS descriptions, the improve­
ments to the monomer full-CI wave functions achiev­
able by employing the partner basis are already fully 
present in the starting wave function AipAipB. A 
further optimization of AyjAip0 in the dimer calcula­
tion, to take into account the physical perturbations 
present in the dimer, will then give energy changes 
that are interpretable only as a pure interaction 
energy. Therefore, not only A£HL but also the full-
CI supermolecular interaction energy 

AEifull CI _ 77,AB,full CI _ 7jA,fiill CI E B,full CI (9) 
will be a pure interaction energy provided one 
subtracts monomer energies obtained in the full 
dimer basis set. This completes the proof that at the 
full-CI level the counterpoise method does provide a 
pure, BSSE-free interaction energy. 

In proving that (9) is a pure interaction energy, 
because A = 0, it is essential that monomer descrip­
tions are used that employ the entire dimer basis, 
that is, including the "to be occupied" orbitals of the 
ghost molecule. Thus the basic assumptions of the 
virtual-only-CP scheme, and of the thesis that CP 
must overcorrect the error in eq 1, are again found 
to be incorrect. A final implication of the above 
results is that every term in the interaction energy 
that one obtains is described at the level of the chosen 
dimer basis set. If the results are somehow unsat­
isfactory one should not blame the CP method, but 
rather proceed by improving the dimer one-electron 
basis set (cf. also the discussion of secondary BSSE 
in section V). 

B. Numerical Evidence 
The arguments presented above have recently been 

numerically confirmed15 by calculating the (BSSE-
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Table 2. Test of the Numerical Accuracy of the CP 
Recipe in CEPA-Intra Calculations on He2 (R = 5.6a0) 

^gCEPA-intra J£ 

basis" 

CR0DS2 
CR0DS4 
CR2DS2 
CR2DS4 
CR4/DS2 
CR4/DS3 
CR4'DS4 

no CP 

7.93 
-20.14 

9.74 
8.37 

10.23 
10.00 
9.80 

CP 

10.778 
10.719 
10.447 
10.441 
10.432 
10.429 
10.4296 

PT estimate from eq 10 

10.838 
10.764 
10.448 
10.443 
10.432 
10.430 

[10.429] 

" See Table 1 for details. b Used in calibrating the final 
column. 

free) first-order SAPT interaction energy E1'SAPT of 
two (full-CI) correlated He atoms for the CRwDSm 
sequence of basis sets which have markedly different 
BSSE when used in supermolecular calculations. In 
the absence of programs capable of calculating E ^ 
for correlated wave functions, these E1,SAPT values 
were compared to those of the counterpoise-corrected 
CEPA-I interaction energy obtained from calcula­
tions in which the intercorrelating (dispersion-type) 
doubly-excited configurations had been omitted from 
the dimer wave function, while the intracorrelating 
double excitations that introduce BSSE had been 
kept. This interaction energy AECEPA"intra is domi­
nated by the desired AE11S which is repulsive for He2, 
but it contains in addition a small higher order 
energy due to the relaxation of the monomer electron 
distributions in the field of the other monomer. Its 
value was estimated to be -0.207 K for the larger 
basis sets. 

Since, according to (8), AEHL should equal E1-SAPT 

for the present (DCBS) full-CI monomer descriptions, 
it follows that a reasonable BSSE-free perturbation 
estimate for AECEPA-intra should be 

^ C E P A - i n t r a ^ ^1,SAPT _ Q ^ 7 R {1Q) 

Selected results from ref 15 are given in Table 2. To 
put these results in perspective, a column 
AECEPA.intra.no c p is included as well. For the larger 
basis sets, where the small AEusher order has become 
stable, the CP-corrected results follow the perturba­
tion estimate to within 0.002 K. That is, to machine 
precision. Since the BSSE for these larger sets still 
varies from 0.2 to 2.1 K it follows that the CP-
corrected energies must have been fully free of BSSE, 
in accordance with the theorem of the previous 
section. 

C. The Case of MCBS SCF Monomer 
Descriptions 

Turning now to more accessible monomer descrip­
tions than the full-CI approach, let us first consider 
the case of MCBS SCF descriptions, which we will 
encounter in section VII. In this case the (MCBS) 
counterpoise recipe leading to the first-order interac­
tion energy AEHL of (8) is to subtract MCBS SCF 
monomer energies from a HL dimer energy (5) 
constructed using the MCBS SCF occupied orbitals 
{occA} and {occB} of A and B. Froman and Lowdin35 

have shown that in this case A is of the order S2, 
where S is a typical overlap integral between the 
occupied orbitals of A and B. Since S may be as large 
as 0 .1-0 .3 , A is not expected to be small. 

As an example, we quote some results for He2 that 
were obtained using a 10s GTO basis for He.14 The 
SCF MCBS results at R = 5.6a0 were 

AEH L = 30.06 /iH E1'SAPT = 28.22 piR 
A = 1.83/^H 

showing that A is too large to ignore. 

In this case it is much more difficult to decide 
whether AEHL can be regarded as a pure interaction 
energy than it was in the DCBS full-CI case. Ac­
cording to (8), AEHL equals the sum of El'SAFT, which 
is a pure interaction energy, and A, which at first 
sight is not, since it is a matrix element over HA and 
IP rather than over V. However, it has been 
noted36,37 that adding A to E1|SAPT gives a result much 
closer to the complete-basis SCF result (viz. in the 
present He2 case, AEHL(s-limit) = 30.69 /<H14), and 
so A has been interpreted as a correction to the 
exchange-repulsion term arising from the inaccuracy 
of the MCBS SCF wave functions. 

This rather ad hoc interpretation has later14 been 
refined as follows. Making use of the fact that for 
the SCF case AypkipB is invariant to transformations 
among the orbitals {occA, occB}, the dimer energy 
EH L of (5) can be reinterpreted as the dimer energy 
for two SCF monomers A and B, whose SCF orbitals 
are optimized in the basis {occA, occB}, rather than 
in the MCBS basis alone. This will lead to slightly 
lower monomer SCF energies EA and EB than before 
(in the present example the lowering was 0.008 /^H), 
and so AE1*1 of (8) will be slightly more repulsive than 
before (viz. AEHL{occA, occB} = 30.07 JUK). However, 
the most striking results are those for the reopti-
mized SCF orbitals, in which one has A « 0 (for 
reasons to be discussed below) and E l S A P T « 30.07 
fiH, so that AEHL now practically equals E1SAFT, 
which is a pure interaction energy. 

This discussion shows that the occurrence of a 
sizeable A in the original MCBS data is a signal that 
there exist lower energy monomer descriptions than 
the original MCBS SCF energies which are still 
compatible with the dimer description AtpAipB. 
When used in (7) these will yield a more repulsive 
AEHL, which is now interpretable as a pure inter­
action energy (cf. Cammi et al.38 and ref 16 for further 
discussions). The difference with the simpler AEHL 

can be quite large, especially if the monomer basis 
sets are small, as shown in ref 38 and Table VIII of 
ref 16. 

The final AESCF contains, in addition to AEHL 

discussed above, a relaxation energy, AEhlgher order, 
which is much more difficult to analyze. However, 
the DCBS data to be discussed below suggest that 
AEhigher order will in practice very nearly be a pure 
interaction energy. Our overall conclusion is there­
fore that the usual CP recipe applied to SCF calcula­
tions constrained to the MCBS level (i.e. the sub­
traction of MCBS SCF monomer energies EA and EB 

from a MCBS-constrained SCF dimer energy) yields 
a reasonably pure interaction energy, AESCFCP, which 
will be somewhat too low compared to that of the 
refined recipe where AE is obtained by subtracting 
SCF monomer energies EA and E B obtained in the 
{occA, occB} orbital space. 

AECEPA.intra.no
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D. The Case of DCBS HF Monomer Descriptions 

Standard supermolecular dimer SCF calculations 
allow full freedom to the monomer description in the 
dimer wave function, and so the analysis of AECP in 
its components A£HL and AEhisher order should now 
start from DCBS SCF monomer descriptions. It has 
been shown (Groen and van Duijneveldt, quoted in 
ref 34) that in this case, just as in the case of exact 
Hartree—Fock monomer descriptions,39 A will be of 
the order S4, where S is a typical overlap integral 
between the occupied orbitals of A and B. A may 
therefore be expected to be small, but only a few 
calculated values are known to us. From a footnote 
in ref 37 one finds for He2 at R = 5.6co a value A 
(SCF, 10 s set) s» 0.003 ^H, which is negligibly small 
compared to other errors in this type of calculation. 
For a near-equilibrium geometry of (H20)2, Rybak et 
al.,40 using the requisite formulas for E1'8***1 derived 
by Jeziorski et al.41 and using dimer-basis monomer 
wave functions, have recently calculated j£1>SAPT at 
the Hartree-Fock level, finding JS1-8*" = -2.12 kcal/ 
mol. For the present discussion we have calculated 
the corresponding Hartree—Fock E^ result (this is 
the zeroth-iteration dimer energy in the dimer SCF 
calculation), using the same basis set and geometry, 
and we obtained A£HL = -2.09 kcal/mol.42 Thus, A 
= 0.03 kcal/mol in this example, an ambiguity that 
is comparable to the basis set incompleteness error 
but much smaller than the error made in this 
calculation by not accounting for electron correlation 
effects. This A value, already small at the HF level, 
is bound to decrease rapidly as soon as one introduces 
some level of CI in the monomer description.34 These 
two examples show that, for all practical purposes, 
CP-corrected ABHL values may be viewed as pure 
first-order interaction energies between monomers 
described at the DCBS level, for systems ranging 
from He2 to (H2O)2. 

The full ABSCF contains, in addition to AEHL, a 
Aghigherorder term which again is difficult to analyze. 
However, convincing numerical evidence showing 
that in DCBS SCF work AEhi8her order will very nearly 
be the pure interaction energy as given by SAPT has 
recently been provided by Cybulski and Chalasin-
ski.43 These authors performed parallel SCF and 
BSSE-free SAPT calculations on the system He-Li+ 

at a distance R = 10ao. At this distance the overlap-
dependent exchange energies, including A, are van-
ishingly small. The first-order (electrostatic) energy 
ought also to be small and only A£higher order is large, 
being due to polarization of the He in the Li+ field. 
In the SAPT calculations this induction energy was 
evaluated up to the fourth order in V, using DCBS 
monomer wave functions. The SCF calculations are 
subject to BSSE, which is still large at this distance. 
A selection of the results is shown in Table 3. The 
results show that for both basis sets AECP is aston­
ishingly close to ESAFT. It follows that AECP, like 
ESAPT is a pure interaction enrgy. It is also clear that 
the BSSE that is still present in A£no c p was fully 
removed by applying the CP recipe. The results 
finally illustrate that even though AECP is a pure 
interaction energy, this AE result may still be quite 
poor. For example, the first-order energy obtained 
for the 31G* basis is clearly much too low. This 

Table 3. Comparison of CP and No-CP SCF 
Interaction Energies with ESAPT for He-Li+ 43 

(R = 1Oa0) 

2JSAPT,first order „ J J 

2JSAPT,higher order „ J J 
2JSAPT,total „ J J 
A£SCF,no 0 P , ^ H 

A£SCF'CP, ^H 

basis 31G* 

-20.317 
-21.202 
-41.519 

-126.133 
-41.512 

large basis 

-0.052 
-67.601 
-67.653 
-67.775 
-67.665 

arises because at the DCBS level the He atom 
acquires a small dipole moment (cf. section V). Only 
by using larger basis sets can one guarantee that 
ABCP will not only be pure (i.e. free from BSSE) but 
also accurate. 

The same paper43 also contained MP2 calculations 
on He-Li+, and for these too the agreement of the 
CP corrected data with the appropriate SAPT ener­
gies was excellent. 

E. Configuration State Counterpoise Procedure 
(CSCP) 

It is actually possible to redefine the monomer 
descriptions that correspond to a given dimer SCF 
calculation in such a way that here, as in the full-CI 
case, the zeroth-order exchange term A becomes zero. 
The monomer wave functions should then be taken 
to be monomer full-CI wave functions in the limited 
orbital space {occA, occB}. These orbitals should be 
optimized to minimize the energy EA + EB in this 
description. The antisymmetrized product Av^Vo 
of these limited-space full-CI wave functions is 
identical to a single-determinant wave function formed 
from the reoptimized occupied SCF orbitals of A and 
B, which when used in (5-8) will yield A = O, and so 
AEHL = E1'SAPT is a pure interaction energy. More­
over, since all monomer energy improvements that 
are compatible with a one-determinant dimer wave 
function are already fully present in this Ar$ip%, a 

subsequent dimer SCF optimization starting from 
this wave function will yield a pure AEhigher order 

interaction energy. 
Hence the overall interaction energy 

^ E T C S C P _ pAB.SCF _ TjA.limited full-CI _ pB,limited full-CI 

(H) 
is rigorously an interaction energy. 

We have labeled this procedure "configuration state 
counterpoise" (CSCP)2 to distinguish it from the usual 
counterpoise at the SCF level which has 

A E C P = ^AB-SCF _ £A,SCF _ ^B1SCF ( l g ) 

(Of course, all quantities in (11) and (12) are to be 
evaluated in the full dimer basis.) The difference 
between the results (12) and (11) defines the "con­
figuration set superposition error" (CSSE) residing 
in (12) because one here employs for the monomers 
a configuration set (i.e. a single-configuration wave 
function) that does not precisely match the n-electron 
dimer description, resulting in a nonzero A. In order 
to avoid this CSSE one must use a higher level CI 
description for the monomers than one employs in 
the dimer calculation. 

The size of the CSSE will be some fraction of the 
difference between the monomer full-CI energies in 
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the full DCBS and MCBS basis sets, i.e. it will be a 
fraction of the size of the ordinary BSSE at the full-
CI level. Since BSSE at the CI level can be quite 
large, it may seem that CSSE is a problem as well. 
However, there is evidence that significant contribu­
tions to the Cl-level BSSE arise only from double, or 
at most quadruple, excitations to ghost orbitals.2 This 
is also apparent from the rapid decrease of the BSSE 
in calculations on (H2O)2 at the consecutive MP2, 
MP3, and MP4 levels of theory.32 Thus, not only the 
value of A but also the size of the CSSE will rapidly 
decrease from values at the Hartree-Fock level, once 
a sufficient level of electron correlation is introduced. 
As a rule no explicit correction for CSSE should 
therefore be necessary. 

An exception to this rule has been encountered9,10 

in calculations on He2 employing the interacting 
correlated fragments (ICF) approach. In one ex­
ample, the dimer calculation employed a CASSCF 
reference space built, in addition to the Is orbitals, 
from the most important correlating orbitals of each 
He atom, viz. 2s, 2px, 2py, 2pz. For the corresponding 
monomers one has the option to employ a CAS 
description including only the atoms own correlating 
orbitals or a CAS description employing the full 
active orbital set of the dimer. Only the latter choice 
was found to give adequate results, since it prevents 
what we here call CSSE. 

V. Basis Set Extension Effects on the 
Components of AE 

According to the analysis in section IV the coun­
terpoise approach yields interaction energies in which 
each contributing term is described at the DCBS 
level. Such results may differ significantly from the 
corresponding MCBS results, as was first pointed out 
by Urban and Hobza.44 The changes when going to 
the DCBS description were later designated as higher 
order basis set superposition effects45 but are also 
referred to as secondary BSSE,46 which is somewhat 
misleading, since extending a basis set is not in itself 
an error. The evidence obtained in later years 
suggests that the use of the DCBS description has a 
beneficial effect on monomer polarizabilities45 and on 
the exchange, dispersion, and polarization interaction 
energies.16-8'47 Dimer centered basis sets are more 
complete for these quantities than are MCBS sets. 
By contrast, the electrostatic component of AE may 
be affected adversely. 14>43'45'48 This is related to the 
symmetry lowering experienced by a monomer in the 
dimer basis set which gives rise to spurious dipoles 
such as components perpendicular to the 2-fold axis 
in a water monomer. The modification (at the DCBS 
level) of moments which are nonzero already in an 
MCBS description may be equally troublesome. 

A recent analysis of the correlated electrostatic 
interaction energy, ECOui, in He2 showed15 that the 
electron—electron repulsion term and the electron-
nucleus attraction term are both severely distorted 
in a DCBS description, but the errors cancel almost 
precisely and reasonable results were found for the 
total .Ecoui- In the same study it was also found that 
the diffuse polarization functions that a basis must 
contain to give a good description of the dispersion 
energy tend to give an exchange repulsion energy 

Table 4. Effect of Basis-Set Extension on the SCF 
First-Order Interaction Energies (/iH) and on the SCF 
and CEPA Dipole Moments" (au) of (H2O)2 (Geometry 
M231) 

basis set6 

DZP 
DZPPc 
EZPPc 
LPPc 
EZPPcB 
LPPcB 
EZPPcBF 
EZPPPBFD 

AFHL 
'iC'DCBS 

-2399 
-2048 
-2089 
-2069 
-2012 
-1991 
-1973 
-1948 

^ 1 M C B S 

-3280 
-2769 
-2269 
-2178 
-2204 
-2149 
-2001 
-2023 

AsCF 

0.794 
0.768 
0.784 
0.784 
0.785 
0.784 
0.785 
0.780 

/^SCF 

0.807 
0.780 
0.787 
0.785 
0.787 
0.785 
0.787 
0.781 

/"CEPA 

0.741 
0.696 
0.726 
0.726 
0.726 
0.726 
0.728 
0.721 

BA' 
f*CEPA 

0.762 
0.715 
0.729 
0.728 
0.730 
0.729 
0.731 
0.723 

0 The superscript AB' denotes that the A dipole was evalu­
ated in the full dimer basis, etc. The proton donor is labeled 
A, the acceptor B . b DZ, ES, EZ, and L denote progressively 
larger sp and s sets on O and H, respectively. P, PPc, and 
PPP denote single, double, and triple sets of polarization 
functions d0 and pH . F is a set of/0 functions, D a set of dH 

functions, and B is a set of bond functions on H-O. 

that is too high if the basis lacks corresponding high-
exponent functions. A similar finding had been 
reported earlier by Meyer and Frommhold.49 

The role of basis-set extension effects has recently 
also been investigated for (HF)2

47'50 and for (H2O)2.
31 

A selection of the (H2O)2 results is given in Table 4. 
The DCBS and MCBS values for AEHL are seen to 
converge to the same limiting value, their difference 
being gradually reduced for larger basis sets. The 
DCBS series was found to converge much more 
smoothly and quickly to the basis-set limit than the 
MCBS series. This leads to the important conclusion 
that methods that try to avoid BSSE by maintaining 
an MCBS-level description throughout the dimer 
calculation (cf. section VII) will have difficulty in 
reaching the basis set limit. In this context, a 
relevant conclusion of the (HF)2 study was that the 
diffuse basis functions usually designated with the 
symbol"+" take the MCBS results close to the DCBS 
values, which themselves are much less sensitive to 
the addition of such functions. In the (H2O)2 study, 
the dipole moment differences between the donor and 
acceptor molecules (which reflect the artefacts of 
using DCBS monomer descriptions) became vanish-
ingly small as the basis grows larger before the dipole 
moment itself converges to its basis-set limit (cf. 
Table 4). It was concluded from this that adjust­
ments to AE0F 16 to correct for artefacts introduced 
at the DCBS level are unnecessary. This concurs 
with a similar study by Szczesniak and Schemer51 

on the complexes of Li+ with NH3 and H2O which 
illustrated the possibility of reducing the MCBS-
DCBS differences to very small values by employing 
Huzinaga's well-tempered basis sets.52 

Vl. Recent Criticisms of the Counterpoise 
Approach 

A. Mayer's Criticism 

The conclusion of section IV that the counterpoise 
recipe is a rigorous one is seemingly in conflict with 
the conclusions, drawn by Mayer and co-workers 
from a series of analytical model studies,53'54 that 
AECP is subject to a hidden additivity assumption and 
contains some "extraneous" terms, one of which is 
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due to the supposedly spurious occupied-to-occupied 
derealization taking place in the monomer + ghost 
calculations. 

It has recently been shown that these objections 
partly arose because in the model studies AECP was 
analyzed starting from an MCBS description for the 
unperturbed monomers.55 These problems disappear 
when similar model systems are studied43'55 starting 
from DCBS descriptions for the monomers. As noted 
in section IIIA, the occupied-to-occupied terms in the 
ghost calculations, far from being spurious, are 
necessary to guarantee a correct evaluation of ex­
change repulsion effects. 

The remainder of the problems noted by Mayer et 
al. (e.g. the appearance of spurious dipole moments 
in a DCBS description) are basis-set extension effects 
on AE as discussed in section V. These problems are 
not to be ignored, but they do not constitute a strong 
argument against the use of the CP approach. In 
fact, several authors using the BSSE-free SAPT 
method, while they are free to employ MCBS descrip­
tions for the fragments in a complex, have chosen to 
employ DCBS descriptions for this purpose (e.g. see 
the work of Szalewicz and co-workers40,56). 

B. Numerical Problems 

Cook et al.,57 when performing SCF + MP2 calcu­
lations on the alanine dimer in a 6-31G** basis 
observed that applying the CP method led to a highly 
repulsive AE value. In analyzing this problem57'58 

they proposed that the error originates from the fact 
that in the monomer + ghost calculations the double 
excitations included in the MP2 step use a larger 
excitation space than is available to the monomer 
present in the dimer (since excitations to the occupied 
MO's on the partner molecule are then Pauli-forbid-
den). Noga and Vibok59 have criticized the CP 
method at the correlated level for precisely the same 
reason. Cook et al. tried to identify the offending 
orbitals (termed ghost virtual orbitals) but indepen­
dent calculations have shown55 that omitting these 
from the monomer + ghost calculation does not solve 
the problem. 

It seems clear that Cook et al.'s interpretation of 
the problem is incorrect. From sections III and rV, 
it follows that the inclusion of the fully occupied + 
virtual orbital space of the ghost, far from generating 
errors, is essential for getting a proper interaction 
energy. Moreover, if something is basically wrong 
in the CP approach at the MP2 level, it should have 
shown up in some other of the numerous MP2 studies 
that have been published to date. Thus, if Cook et 
al.'s results were really too repulsive (which remains 
to be confirmed) it must have had some other cause. 
One possibility that suggests itself is the occurrence 
of near linear dependencies in the monomer + ghost 
SCF orbitals, which degrade the following MP2 step. 

VII. Alternative Ways of Avoiding BSSE 

Motivated by the seemingly endless debate in the 
literature about the validity of the counterpoise 
approach, several authors have sought to restrict the 
description of the monomers in a supermolecular 
dimer calculation in such a way that usage of the 

partner orbitals for improving the monomers own 
energy is avoided from the outset. The monomer 
energies embodied in E^ are then obtained at the 
MCBS level, and so by subtracting MCBS monomer 
energies, one obtains a AE that seems free of match­
ing errors. Actually, this is a straightforward ap­
plication of the counterpoise concept, except that 
MCBS descriptions are used throughout, instead of 
the DCBS descriptions of eq 2. This type of approach 
looks attractive at first sight, but several problems 
have turned up in practice, which we discuss below. 

A problem shared by all these methods in which 
(part of) the monomer wave function is described in 
MCBS, while the full dimer Hamiltonian is used for 
calculating the dimer energy, is that the zeroth-order 
exchange term A is potentially large. For example, 
a HF-level description of this type would have a A of 
the order of S2,16 as opposed to the order S4 result 
that obtains when DCBS descriptions are used (cf. 
section IV). Consequently, as explained for the SCF 
case in section IVC, the procedure used by these 
authors to obtain AE, viz. to subtract MCBS mono­
mer energies from an MCBS-constrained dimer en­
ergy, does not yield a pure interaction energy. The 
AE obtained will be noticeably more attractive than 
the pure AE that can be obtained by subtracting 
monomer energies in the {occA, occB} space. The 
difference will disappear only in the limit that the 
MCBS basis approaches the basis set limit, for the 
S2 component of A will then go to zero. 

A. Methods Avoiding BSSE at the HF Level 

Exploiting a method originally described by Stoll 
et al.,60 Cullen26 has recently performed super-
molecular SCF calculations on several hydrogen-
bonded complexes in which the monomer orbitals in 
the dimer calculation were expanded in the mono­
mers own basis set only (strictly monomer MO 
approach, SMMO). The method is closely related to 
the (strictly local) valence bond approach advocated 
some time ago by Cooper et al.61 and by Collins and 
Gallup.62 Cullen obtained several interesting results 
in this way. For example, he found that the SMMO 
AE's were consistently above (less negative than) the 
results obtained using the standard counterpoise 
approach (and, clearly, still more above the uncor­
rected AE of (I)). Cullen's interpretation of this 
result, largely confirmed by a later more detailed 
analysis,55 was that AESMM0 lacks the attractive 
contribution from charge-transfer (or charge-delocal-
izing) excitations from the occupied MO's of one 
monomer to the virtuals of the other, and in fact by 
comparing his data to the standard counterpoised 
AECP Cullen was able to estimate this somewhat 
elusive contribution to AE, finding values ranging 
from nearly zero to several kilocalories per mole 
depending on the system, the intermolecular separa­
tion R, and the basis set. The missing CT energy in 
AESMM0 hardly became less by using larger basis sets, 
and so there is no hope that for hydrogen-bonded 
complexes interaction energies accurate to within 0.1 
kcal/mol or so can readily be obtained by the SMMO 
(or strictly local VB) method. 

As expected from the theory of CT effects, the 
missing CT energy was found to decay very rapidly 
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with R. In other words, AESMM0 and AECP become 
virtually identical at some R, usually larger than Re. 
Interestingly, the BSSE of (3) was still large at this 
R. To the extent that SMMO is free of BSSE it then 
follows that AECP was also free of BSSE, in agree­
ment with the conclusions of section IV. 

A related proposal63 to obtain BSSE-free SCF 
interaction energies by constraining the monomer 
description in the dimer calculation has been found 
to show some defects55'64'65 and has not yet led to 
useful results. 

A potentially more powerful method, aimed at 
avoiding only those basis-set extension effects in the 
dimer calculation that give rise to BSSE, is the 
chemical Hamiltonian approach (CHA) of Mayer and 
co-workers. Several variants have been proposed, of 
which the CHA/CE variant5366 is considered to be the 
most accurate, and the CHA/F variant67-69 is more 
convenient to use. 

In the CHA approach, the monomers in the dimer 
are not allowed to improve their own energy by using 
the partner basis, but mixing of A and B orbitals 
induced by the intermolecular terms in the dimer 
Hamiltonian does take place, and so, in contrast to 
the SMMO case, charge transfer effects are accounted 
for. Once the dimer wave function has been obtained, 
the dimer energy is calculated as an expectation 
value over the full dimer Hamiltonian. According to 
the detailed analysis by Gutowski and Chalasinski55 

the Hartree-Fock level CHA interaction energy then 
comprises a first-order interaction energy at the 
MCBS level, and a higher order (or deformation) 
interaction energy that is given at the DCBS level. 

The HF level and MP2 level CHA/CE results for 
He2 reported by Noga and Vibok59 have been com­
pared to the corresponding results in the same basis 
sets obtained by the standard counterpoise method 
both by the original authors59 and by Gutowski and 
Chalasinski.55 The differences between the two sets 
of results were found to be large in comparison to 
the binding energy of He2. Noga and Vibok ascribed 
the differences to flaws in the CP approach. Gu­
towski and Chalasinski pointed out, however, that 
the CP results were very reasonable in comparison 
to known results in much larger basis sets, whereas 
the CHA/CE results were quite unreasonable and ill-
behaved as a function of distance. The results for 
(HF)2 reported in the same paper59 are also suspect, 
since they show an alarming lack of repulsion at 
short distances, not only in the SCF step but also in 
the MP2 step. 

Valiron et al.69 have recently performed a similar 
comparison at the SCF level for a number of hydrogen-
bonded complexes. In these examples, the CHA/F 
results for nine different basis sets and at a range of 
intermolecular separations were compared to the 
corresponding standard CP results. Although the 
comparisons were presented only in graphical form, 
the differences between the two approaches can be 
seen to be quite small (typically 0.1—0.4 kcal/mol), 
especially for the larger basis sets, which were of 
polarized triple-^ quality. Valiron et al. concluded 
that the remaining small differences are due to the 
"spurious occupied-to-occupied derealization" inher­
ent in the ghost calculations of the CP approach. 

However, as discussed before, this aspect of the 
ghost calculations is an essential ingredient of an 
accurate AE calculation. A more likely explanation 
of the differences is that a MCBS-level description 
of the first-order interaction energy is employed in 
CHA/F while a DCBS-level description is used in the 
CP results. According to the discussion in sections 
rVC and V, the use of MCBS descriptions can easily 
give rise to differences of the magnitude encountered 
here. As one approaches a complete basis, the 
difference between the MCBS and DCBS descriptions 
is expected to disappear before the BSSE becomes 
zero, and this is precisely the pattern shown by the 
CHA/F and CP results of Valiron et al. 

On the whole it appears that for these H-bonded 
systems the differences between the HF-level CHA/F 
and CP results are small compared to the errors 
associated with the use of incomplete basis sets and 
the neglect of correlation effects. 

B. Methods Avoiding BSSE at the Correlated 
Level 

An attractive way to analyze the contribution of 
electron correlation effects to AE is to start from a 
description at the single-configuration level (e.g. the 
dimer SCF wave function) in which the (occupied) 
orbitals are localized on the two fragments involved. 
Double replacement configurations may then be 
classified as contributing to the intramolecular cor­
relation in fragment A or in fragment B (when both 
replaced electrons originate from the occupieds of 
that fragment) or as intercorrelating (dispersion-type) 
configurations when one electron comes from A and 
one from B. A well-known class of CI methods based 
on such a partitioning is the interacting correlated 
fragments (ICF) approach developed by McLean and 
co-workers.9 The same idea has recently been used 
in calculations at the CEPA level,15-49 at the MRCI 
level,70 at the MP2 level25*71-72 and in the so-called 
extended group function models.73-74 

In each of these papers the partitioning of the space 
of excited configurations was used to partition the 
correlation interaction energy according to 

AECI = AEintra + AEinter (13) 
where the intra contributions are defined by sub­
tracting the correlation energy of fragments A and 
B from the energy contribution due to the cor­
responding excitations in the dimer. In calculations 
employing for the dimer the full (Hartree—Fock) 
virtual space for all three types of excitation BSSE 
will enter the AEintra terms if one subtracts MCBS 
monomer energies. BSSE will be avoided if DCBS 
descriptions are used. 

It has been recognized long ago by Liu and McLean7 

that in this type of approach one could prevent BSSE 
from entering the calculated AE also by omitting 
from the dimer calculation those intracorrelating 
configurations that use orbitals of the partner frag­
ment. This idea has been implemented in several of 
the more recent studies by partitioning the dimer 
virtual space in parts corresponding to A and B, 
respectively. Kapuy and Kozmutza72 carried out a 
Boys localization of the dimer (Hartree-Fock) vir-
tuals for this purpose, but subsequent calculations 
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showed that the localized virtual space did not 
correspond closely enough to that of the isolated 
monomers to permit the omission of the excitations 
to the virtual space of the partner molecule. In the 
papers by Meyer and Frommhold,49 Saebo et al.,25 

and Roeggen,73-74 the monomers own basis set (after 
suitable orthogonalization, if desired) was used to 
generate the virtual space of A in the dimer calcula­
tion. This guarantees a good matching to the (MCBS) 
virtual space of the free monomers. 

The most clear-cut results obtained in this way are 
the (H2CO2 MP2-level results reported by Saebo et 
al.25 These authors used a sequence of four basis sets 
in an attempt to reach converged results for AE. They 
also performed independent SAPT-type calculations 
to monitor the dispersion energy provided by their 
MP2 descriptions. Their local ("BSSE-free") MP2 
interaction energy was roughly constant for their 
sequence of basis sets, from which they concluded 
that convergence had been reached and that the 
corresponding CP-corrected results, which showed 
less attraction, suffered from overcorrection of the 
BSSE. Although their data deserve further study, 
both conclusions seem premature, since in fact from 
their data it follows that the AEinter results were still 
converging to more negative values and the AEintra 

to more repulsive values even for their largest basis. 
This points to difficulties in converging an MCBS 
description of AEintra to the basis set limit that are 
not observed in the DCBS description.31 

VIII. Practical Points 

A. Geometry Optimization and Vibrational 
Frequencies 

One of the useful features of current quantum 
chemical program packages is the option of auto­
mated optimization, using analytical derivative tech­
niques, of the geometry (R) of a complex with or 
without concomitant optimization of the intra­
molecular geometrical parameters (r). Such methods 
operate on the uncorrected total energy E^(Rf) of 
the complex, and so the results are contaminated 
with BSSE. There is no formal problem in carrying 
out such a calculation while avoiding the BSSE that 
enters the intermolecular interaction energy. The 
function that should then be minimized is, in stead 
o f £AB ; 75-77 

E(Bj-) = Ede{r) + &Ecp(R,r) (14) 

where E&e{r) is the energy required to reach a 
particular deformed geometry (r) of the free mono­
mers, while AEcp(R,r) is the counterpoised inter­
action energy when these deformed monomers ap­
proach to some complex geometry R. E&et can be 
calculated in calculations entirely separate from 
those of AECP, using basis sets and computational 
schemes that are optimal for this purpose. (This is 
actually an advantage compared to the case where 
one optimizes EAB since the description of EAB must 
then simultaneously be adequate for intramolecular 
distortions and for intermolecular interactions.) Since 
analytical derivatives for all energies entering (14) 
have already been implemented in current programs, 
there is no fundamental problem in designing auto­

mated optimization algorithms based on (14), but no 
such algorithm has yet been implemented. The 
application of (14) therefore remains rather laborious, 
and no fully optimized structures, using (14), for 
complexes of polyatomic molecules have yet been 
reported. 

Nevertheless, information on the distortion of 
potential surfaces caused by optimizing E^ rather 
than (14) is gradually coming available. In a study 
of Ne2 and (C02)2, Eggenberger et al.78 have noted 
the much too short equilibrium distances that result 
when BSSE is not corrected for. Apparently, the 
effect of BSSE dominates over all other errors that 
might have distorted the surface, such as the under­
estimation of the dispersion energy. For water 
dimer, similar shortenings have been reported.31,79 

These shortenings were exceptionally large upon the 
addition of bond functions in the intermolecular 
overlap region,31 and so this type of basis set im­
provement (it improves mainly the description of the 
dispersion attraction31-80-82) can only be admitted 
when using (14). (The CP method offers no problems 
in dealing with bondfunctions or any other uncon­
ventional basis set.) More conventional improve­
ments of the basis, such as the choice of progressively 
larger members of the family of aug-cc-pVXZ sets,83 

might be expected to produce a systematic increase 
of the uncorrected Re from values which are too short 
to values approaching the experimental one, but 
recent experiences with water dimer suggest that the 
convergence may in fact be irregular and unpredict­
able.84 By contrast, for water dimer31 the use of (14) 
produced a smooth convergence from too long Re 
values to a final value that after vibrational averag­
ing agrees to within 0.005 A with Odutola and Dyke's 
experimental result.85 To illustrate these points a 
selection of the equilibrium distances and the cor­
responding binding energies for (H2CO2 is shown in 
Table 5. 

The effect of BSSE on calculated vibrational fre­
quencies can also be avoided by using (14) rather 
than the uncorrected E^. For hydrogen-bonded 
complexes it has been found that the errors at the 
SCF level are small. But at the correlated level 
BSSE leads to OH vibrational frequency shifts (red 
shifts) that are too large86 and to an imprecise 
prediction of the position of hot bands and combina­
tion bands associated with the simultaneous excita­
tion of an intermolecular and an intramolecular 
mode.87'88 

B. Ambiguities in the Calculated Binding 
Energies of n-mers 

The simplest way of forming a trimer is by the 
process A + B + C —* ABC, and the CP approach to 
calculating the AB for this process would be to use 
the trimer basis for all fragments. The formation of 
a trimer ABC can also be done in steps such as A + 
B - A B , followed by AB + C — ABC. If one adopts 
the CP method in calculating the binding energies 
for each individual step, then in the second step one 
would employ the trimer basis {ABC} for all frag­
ments involved. But in the first step one has two 
choices, viz. to calculate all fragment energies in the 
{AB} set or to calculate all fragment energies in the 
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Table 5. Convergence to the Basis-Set Limit of the Equilibrium Binding Energy (kcal/mol) and O-O distance (A) 
for (H2O)2 for Several Basis Sets" 

basis set 

MCY'79 

(5,4,1/3,D95 

DZP' 
ESP 
ESPB 
EZPPcB 
EZPPPBFD 

R 

3.05 (3.04) 
3.04 (2.99) 
3.04 
3.03 (3.01) 
3.03 (3.01) 
3.03 (3.02) 
3.05 (3.03) 

a The values between parentheses were 
basis sets employed in the last five rows. 

SCF 

AE 

-3.8(-4.O) 
-4.04 (-5.14) 
-4.16 
-3.89 (-4.26) 
-3.95 (-4.66) 
-3.80 (-4.10) 
-3.76 (-4.06) 

obtained without CP correction. 

R 

2.99 (2.90) 

3.04 
2.98 (2.84) 
2.97 (2.55) 
2.96 (2.63) 
2.94 (2.80) 

Taken from ref 31 

SCF + MP2 

AE 

-4.3 (-5.9) 

-4.35 
-4.50 (-6.03) 
-4.71 (-12.50) 
-4.61 (-8.07) 
-4.68 (-8.21) 

. See Table 4 for details of the 

{ABC} set. Both choices adhere to the CP principle, 
but it has been found89-91 that the two choices for 
the first step give different AE's and hence different 
overall AE's as well. If one considers the alternative 
path A + C — AC followed by AC + B — ABC, then 
again two choices can be made. From the point of 
view of thermodynamics, the overall binding energy 
should be independent of the chosen path, but only 
the choice to calculate all individual energies in basis 
{ABC} will yield the same overall AE as that for the 
first path.91 Thus the use of the {ABC} set for all 
fragments was recommended for the sake of consis­
tency. Likewise, in larger clusters, AECP should 
preferably be calculated by using monomer energies 
evaluated in the full cluster basis (although sets on 
distant ghosts may make a tiny contribution in 
practice90,91). 

One may wonder about the physical significance 
of the various overall AE values that could have been 
obtained by making different choices. Since the CP 
method is followed in all variants, all AE's can 
rightfully be considered as "pure interaction energies" 
for system ABC. The reason that the results can be 
different must therefore be that the different basis 
sets, such as {AB} or {ABC} when studying the step 
A + B — AB, are of different quality in describing 
the physics of this step. Thus the differences are a 
symptom of lingering basis set incompleteness, and 
they are an indication of the error margin in the final 
AE, as compared to the result in a complete basis. 
Note that the ambiguities are not inherent to the use 
of the CP approach, as they would also arise when 
applying a BSSE-free method such as SAPT. 

IX. Conclusion and Outlook 

Counterpoise methods do not yield exact inter­
action energies in one stroke. However they can give 
a pure interaction energy that is free of BSSE. This 
allows the user to focus on improving the description 
of the physics of the interaction without having to 
worry about the size of BSSE as well. In this way, 
interaction energies converged to the basis set limit 
have now been obtained for systems ranging from He2 
to (H2O)2.

9-31'50'51'70 Similar attempts to converge 
uncorrected interaction energies to the basis set 
limit1'32'92 have been less successful, even though very 
large basis sets (necessary to suppress BSSE) were 
employed. The alternative BSSE-avoiding schemes 
discussed in section VII (with the exception of the 
Hartree-Fock level CHA/F model) have also not been 
very successful in reaching good accuracy, mainly 

because restricting (part of) the monomer description 
to remain at the MCBS level necessitates the use of 
excessively large MCBS basis sets before the com­
ponents of AE will converge. 

An intriguing aspect of the CP approach that will 
need further exploration is that the relative stability 
of isomers may be different at the uncorrected and 
corrected levels.93,94 Other areas for future work are 
the development of CP-based algorithms for auto­
matic geometry optimization, and the development 
of CP techniques suitable for open-shell interactions. 
This would open the possibility of applying a rigorous 
CP method within molecules and thus of studying 
weak interactions within molecules, such as internal 
hydrogen bonds. 
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